Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
Cytotherapy ; 25(6 Supplement):S245-S246, 2023.
Article in English | EMBASE | ID: covidwho-20245241

ABSTRACT

Background & Aim: With larger accessibility and increased number of patients being treated with CART cell therapy, real-world toxicity continues to remain a significant challenge to its widespread adoption. We have previously shown that allogeneic umbilical cord blood derived (UCB) regulatory T cells (Tregs) can resolve uncontrolled inflammation and can treat acute and immune mediated lung injury in a xenogenic model as well as in patients suffering from COVID-19 acute respiratory distress syndrome. The unique properties of UCB Tregs including: i) lack of plasticity when exposed to inflammatory micro-environments;ii) no requirement for HLA matching;iii) long shelf life of cryopreserved Tregs;and iv) immediate product availability for on demand treatment, makes them an attractive source for treating acute inflammatory syndromes. Therefore, we hypothesized that add-on therapy with UCB derived Tregs may resolve uncontrolled inflammation responsible for CART cell therapy associated toxicity. Methods, Results & Conclusion(s): UCB Tregs were added in 1:1 ratio to CART cells, where no interference in their ability to kill CD19+ Raji cells, was detected at different ratios : 8:1 (80.4% vs. 81.5%);4:1 (62.0% vs. 66.2%);2:1 (50.1% vs. 54.7%);1:1 (35.4% vs. 44.1%) (Fig 1A). In a xenogenic B cell lymphoma model, multiple injections of Tregs were administered after CART injection (Fig 1B), which did not impact distribution of CD8+ T effector cells (Fig 1C) or CART cells cells (Fig 1D) in different organs. No decline in the CAR T levels was observed in the Tregs recipients (Fig 1E). Specifically, no difference in tumor burden was detected between the two arms (Fig 2A). No tumor was detected in CART+Tregs in liver (Fig 2B) or bone marrow (Fig 2C). A corresponding decrease in multiple inflammatory cytokines in peripheral blood was observed in CART+Tregs when compared to CART alone (Fig 2D). Here we show "proof of concept" for add-on therapy with Tregs to mitigate hyper-inflammatory state induced by CART cells without interference in their on-target anti-tumor activity. The timing of Tregs administration after CART cells have had sufficient time for forming synapse with tumor cells allows for preservation of their anti-tumor cytotoxicity, such that the infused Tregs home to the areas of tissue damage to bind to the resident antigen presenting cells which in turn collaborate with Tregs to resolve inflammation. Such differential distribution of cells allow for a Treg "cooling blanket" and lays ground for clinical study. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

2.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20245051

ABSTRACT

mRNA is a new class of drugs that has the potential to revolutionize the treatment of brain tumors. Thanks to the COVID-19 mRNA vaccines and numerous therapy-based clinical trials, it is now clear that lipid nanoparticles (LNPs) are a clinically viable means to deliver RNA therapeutics. However, LNP-mediated mRNA delivery to brain tumors remains elusive. Over the past decade, numerous studies have shown that tumor cells communicate with each other via small extracellular vesicles, which are around 100 nm in diameter and consist of lipid bilayer membrane similar to synthetic lipidbased nanocarriers. We hypothesized that rationally designed LNPs based on extracellular vesicle mimicry would enable efficient delivery of RNA therapeutics to brain tumors without undue toxicity. We synthesized LNPs using four components similar to the formulation used in the mRNA COVID19 vaccines (Moderna and Pfizer): ionizable lipid, cholesterol, helper lipid and polyethylene glycol (PEG)-lipid. For the in vitro screen, we tested ten classes of helper lipids based on their abundance in extracellular vesicle membranes, commercial availability, and large-scale production feasibility while keeping rest of the LNP components unchanged. The transfection kinetics of GFP mRNA encapsulated in LNPs and doped with 16 mol% of helper lipids was tested using GL261, U87 and SIM-A9 cell lines. Several LNP formations resulted in stable transfection (upto 5 days) of GFP mRNA in all the cell lines tested in vitro. The successful LNP candidates (enabling >80% transfection efficacy) were then tested in vivo to deliver luciferase mRNA to brain tumors via intrathecal administration in a syngeneic glioblastoma (GBM) mouse model, which confirmed luciferase expression in brain tumors in the cortex. LNPs were then tested to deliver Cre recombinase mRNA in syngeneic GBM mouse model genetically modified to express tdTomato under LoxP marker cassette that enabled identification of LNP targeted cells. mRNA was successfully delivered to tumor cells (70-80% transfected) and a range of different cells in the tumor microenvironment, including tumor-associated macrophages (80-90% transfected), neurons (31- 40% transfected), neural stem cells (39-62% transfected), oligodendrocytes (70-80% transfected) and astrocytes (44-76% transfected). Then, LNP formulations were assessed for delivering Cas9 mRNA and CD81 sgRNA (model protein) in murine syngeneic GBM model to enable gene editing in brain tumor cells. Sanger sequencing showed that CRISPR-Cas9 editing was successful in ~94% of brain tumor cells in vivo. In conclusion, we have developed a library of safe LNPs that can transfect GBM cells in vivo with high efficacy. This technology can potentially be used to develop novel mRNA therapies for GBM by delivering single or multiple mRNAs and holds great potential as a tool to study brain tumor biology.

3.
Advanced Therapeutics ; 6(5) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20244710

ABSTRACT

Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due to its self-adjuvanting and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles are successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window can benefit from further improvement. To investigate alternatives to lipid nanoparticles, a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM in vitro and in vivo as assessed by measuring expression of SAM encoding reporter proteins is developed. The ability of these polymers to deliver SAM intramuscularly in mice is evaluated, and a polymer-based formulation that yields up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM is identified. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicits superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.Copyright © 2023 The Authors. Advanced Therapeutics published by Wiley-VCH GmbH.

4.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243743

ABSTRACT

Ionizable amino lipids are a major constituent of the lipid nanoparticles for delivering nucleic acid therapeutics (e.g., DLin-MC3-DMA in ONPATTRO , ALC-0315 in Comirnaty , SM-102 in Spikevax ). Scarcity of lipids that are suitable for cell therapy, vaccination, and gene therapies continue to be a problem in advancing many potential diagnostic/therapeutic/vaccine candidates to the clinic. Herein, we describe the development of novel ionizable lipids to be used as functional excipients for designing vehicles for nucleic acid therapeutics/vaccines in vivo or ex vivo use in cell therapy applications. We first studied the transfection efficiency (TE) of LNP-based mRNA formulations of these ionizable lipid candidates in primary human T cells and established a workflow for engineering of primary immune T cells. We then adapted this workflow towards bioengineering of CAR constructs to T cells towards non-viral CAR T therapy. Lipids were also tested in rodents for vaccine applications using self-amplifying RNA (saRNA) encoding various antigens. We have then evaluated various ionizable lipid candidates and their biodistribution along with the mRNA/DNA translation exploration using various LNP compositions. Further, using ionizable lipids from the library, we have shown gene editing of various targets in rodents. We believe that these studies will pave the path to the advancement in nucleic acid based therapeutics and vaccines, or cell gene therapy agents for early diagnosis and detection of cancer, and for targeted genomic medicines towards cancer treatment and diagnosis.

5.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243277

ABSTRACT

Glioblastoma is an extremely aggressive and difficult cancer to treat, which may partly be due to its limited ability to induce T-cell responses. However, combining viral vector vaccines with other therapies to generate tumor-specific T cells may provide a meaningful benefit to patients. Here, we investigated whether heterologous prime-boost vaccination with chimpanzee-derived adenoviral vector ChAdOx1 and modified vaccinia Ankara (MVA) vaccines could generate therapeutically effective CD8+ T-cell responses against a model antigen P1A, a mouse homolog of human tumorassociated Melanoma Antigen GenE (MAGE)-type antigens, expressed by a BGL-1 mouse glioblastoma cell line. We demonstrated that heterologous prime-boost vaccination with ChAdOx1/MVA vaccines targeting P1A generated a high magnitude of CD8+ T cells specific for the P1A35-43 epitope presented by the MHC class I molecule H-2Ld . Prophylactic vaccination with ChAdOx1/MVA-P1A significantly prolonged the survival of syngeneic mice subcutaneously challenged with P1A-expressing BGL-1 tumors. Furthermore, different vaccination schedules significantly impact the magnitude of antigen-specific CD8+ T-cell responses and may impact protective efficacy. However, the substantial induction of myeloid-derived suppressor cells (MDSCs) by this tumor model presents a significant challenge in the therapeutic setting. Future work will investigate the efficacy of this vaccination strategy on intracranial P1A-expressing BGL-1 models.

6.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20242819

ABSTRACT

Lung cancer is the leading cause of cancer related deaths worldwide, with a relatively low 5-year survival rate. Although there are some therapies against lung cancer, new effective treatment options are urgently required. Recently during the COVID-19 pandemic, we have seen that SARSCoV-2 binds to its receptor angiotensin-converting enzyme 2 (ACE2) via spike S1 to enter the cells. This study underlines the importance of SARS-CoV-2 spike S1 in inducing death in human lung cancer cells. Interestingly, we have seen that recombinant spike S1 treatment at very low doses led to death of human A549 lung cancer cells. On the other hand, boiled recombinant SARS-CoV-2 spike S1 remained unable to induce death, suggesting that the induction of cell death in A549 cells was due to native SARS-CoV-2 spike S1 protein. SARS-CoV-2 spike S1-induced A549 cell death was also inhibited by neutralizing antibodies against spike S1 and ACE2. Moreover, our newly designed wild type ACE2-interacting domain of SARS-CoV-2 (wtAIDS), but not mAIDS, peptide also attenuated SARS-CoV-2 spike S1-induced cell death, suggesting that SARS-CoV-2 spike S1- induced death in lung cancer cells depends on its interaction with ACE2 receptor. Similarly, recombinant spike S1 treatment also led to death of H1299 and H358 human lung cancer cells. Finally, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) intoxication led to the formation tumors in lungs of A/J mice and alternate day intranasal treatment with low dose of recombinant SARS-CoV-2 spike S1 from 22-weeks of NNK insult (late stage) led to induced apoptosis and tumor regression in the lungs. These studies indicate that recombinant SARS-CoV-2 Spike S1 protein may have implications in the treatment of lung cancer.

7.
Cytotherapy ; 25(6 Supplement):S239, 2023.
Article in English | EMBASE | ID: covidwho-20239698

ABSTRACT

Background & Aim: Immune checkpoint inhibitors (ICI) revolutionized solid tumor treatment, however, in many tumors only partial response is achieved. Allocetra-OTS has an immune modulating effect on macrophages and dendritic cells and showed an excellent safety profile in patients including patients with sepsis and Covid-19. Here we investigated the anti-tumoral effect of Allocetra-OTS cellular therapy, in peritoneal solid tumor animal models. Methods, Results & Conclusion(s): Allocetra-OTS is manufactured from enriched mononuclear fractions and induced to undergo early apoptosis. Balb/c mice were inoculated intraperitoneally (IP) with AB12 (mesothelioma) with pLenti-PGK-V5-Luc-Neo and treated with anti- CTLA4 with or without Allocetra-OTS. Mice were monitored daily for clinical score and weekly using IVIS (Fig.1). Kaplan-Meier log rank test was done for survival. For Allocetra-OTS preparation, enriched mononuclear fractions were collected by leukapheresis from healthy eligible human donors and induced to undergo early apoptosis. Anti- CTLA4 standalone therapy significantly improved survival (Fig.2) from mean 34+/-9 to 44.9 +/-20 days. However, OTS standalone therapy was non-inferior and improved survival to 52.3 +/-20 days. Anti-CTLA4 + Allocetra-OTS combination therapy, ameliorated survival to 86.7+/-20 days with complete cancer remission in 60-100% of mice. Similar anti- tumoral effects of Allocetra-OTS were seen in mesothelioma model in a combination therapy with either anti-PD1 or cisplatin and using anti-PD1 in ID8 ovary cancer model. Based on single cell analysis confirmed by flow cytometry and pathology, the mechanism of action seems to be related or at least associated with an increase in f/480high peritoneal macrophages and a decrease in recruited macrophages, and to f/480high infiltration of the tumor. However, further studies are needed to confirm these observations. During IP tumor progression, Allocetra-OTS as a standalone therapy or in combination with ICI, or cisplatin, significantly reduced tumor size and resulted in complete remission in up to 100% treated mice. Similar results were obtained in ID8 ovary cancer. Based on excellent safety profile in > 50 patients treated in prior clinical trials for sepsis and Covid-19, Phase I/II clinical trial of Allocetra-OTS plus chemotherapy has started and three patient already recruited. A second phase I/II clinical trial of Allocetra- OTS plus anti-PD1, as a second- and third-line therapy in various cancers, was initiated in Q1 2023. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

8.
Cytotherapy ; 25(6 Supplement):S72, 2023.
Article in English | EMBASE | ID: covidwho-20239522

ABSTRACT

Background & Aim: The pro-angiogenic, immunoregulatory and anti- inflammatory properties of MSCs are being exploited for the development of cellular therapies, including the treatment of graft versus host disease (GvHD), inflammatory bowel disease and COVID-19. SNBTS have developed a GMP process to bank umbilical cord MSCs (UC-MSCs) whereby we can reliably bank 100 vials of 10 million P2 UC-MSCs per cord. Each of these vials can be extensively expanded and stored for specific applications. The ultimate aim of the bank is for off-the-shelf clinical use, e.g., in GvHD or as an adjuvant therapy in Islet transplantations. Methods, Results & Conclusion(s): During process development, different basal media and supplements were screened for proliferation and MSC marker expression. Cells grown in promising media combinations were then tested for tri-lineage differentiation (identity), their chemokine/cytokine expression and T-cell inhibition (function) assessed. Medium selected for further GMP development and scale up was ultimately determined by all round performance and regulatory compliance. GMP-like UC-MSCs were shown to have immune-modulatory activity in T-cell proliferation assays at 4:1 or 16:1 ratios. Co-culture of UC-MSCs and freshly isolated leukocytes, +/- the immune activating agent LPS, show a dose dependent survival effect on leukocytes. In particular, neutrophils, which are normally very short lived in vitro demonstrated increased viability when co-cultured with UCMSCs. The survival effect was partially reproduced when UC-MSC were replaced with conditioned medium or cell lysate indicating the involvement of soluble factors. This improved neutrophil survival also correlates with results from leukocyte migration studies that demonstrate neutrophils to be the main cell type attracted to MSCs in in vitro and in vivo. Genetic modification of UC-MSC may improve their therapeutic potential. We have tested gene editing by CRISPR/Cas9 technology in primary UC-MSCS. The CXCL8 gene, highly expressed in UC-MSC, was targeted in isolates from several different donors with editing efficiencies of 78-96% observed. This translated to significant knockdown of CXCL8 protein levels in resting cells, however after stimulation levels of CXCL8 were found to be very similar in edited and non-edited UC-MSCs. This observation requires further study, but overall the results show the potential to generate future banks of primary UC-MSCS with genetically enhanced pro-angiogenic, immunoregulatory and/or anti-inflammatory activities.Copyright © 2023 International Society for Cell & Gene Therapy

9.
American Journal of Reproductive Immunology ; 89(Supplement 1):28, 2023.
Article in English | EMBASE | ID: covidwho-20238380

ABSTRACT

CD4+ T Cells from Preeclamptic patients with or without a history of COVID-19 during pregnancy cause hypertension, autoantibodies and cognitive dysfunction in a pregnant rat model Objective: Preeclampsia (PE) new onset hypertension (HTN) during pregnancy, is associated with increased autoantibodies, cerebral blood flow (CBF) impaired cognitive function and memory loss. We have shown adoptive transfer of placentalCD4+T cells from PE women into athymic nude pregnant rats causesHTNand autoantibodies associated with PE.COVID-19 (CV) during pregnancy is associated with increased diagnosis of PE. However, we do not know the role of CD4+ T cells stimulated in response to CV in contributing to the PE phenotype seen patients with a Hx of CV during pregnancy. Therefore, we hypothesize that adoptive transfer of placental CD4+ T cells from patients with a CV History (Hx) during pregnancy with PE causes HTN, increased CBF and cognitive dysfunction in pregnant athymic nude recipient rats. Study Design: Placental CD4+ T cells isolated from normotensive (NP), PE, Hx of CV normotensive (CV Hx NT), and Hx of CV with PE (CV Hx+PE) at delivery. One million CD4+ T cells were injected i.p. into nude athymic rats on gestational day (GD) 12. The Barnes maze and the novel object recognition behavioral assays were used to assess cognitive function on GDs 15-19. Blood pressure (MAP) and CBF were measured by carotid catheter and laser Doppler flowmetry on GD19, respectively. A two-way ANOVA was used for statistical analysis. Result(s):MAPincreased inCVHx+PE (111 +/- 4, n = 4) and PE recipient rats (115 +/- 2 mmHg, n = 5) compared to CV Hx NT (100 +/- 4, n = 5) and NP (99 +/- 3 mmHg, n = 4, P < .05). CV Hx+PE and PE exhibited latency with errors navigating in the Barnes maze compared to CV Hx NT and NP groups. Locomotor activity was decreased in CV Hx+PE (P < .05) compared to PE, CV Hx NT, and NP groups. CV Hx+PE and PE spent more time exploring identical objects compared to CV Hx NT and NP groups. PE and CV Hx+ PE had increased CBF compared to CV Hx NT and NP rats. Conclusion(s): Our findings indicate that pregnant recipients of CD4+ T cells from PE with or without a Hx CV during pregnancy cause HTN, increased CBF and cognitive dysfunction compared to recipients of NP or NT Hx COVID-19 CD4+ T cells.

10.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20237062

ABSTRACT

Project objective: Despite the recent revolution in immune checkpoint inhibitors (ICIs), only modest improvement in overall survival and likely caused by not enough potent cellular immunity among BC patients. Our lab has been focus on inducing cellular immunity against HER2+ BC through vaccination against the tumor-associated antigen HER2. Approximately 20 years ago, we performed an experimental pilot study by administrating HER2 peptide and recombinant protein pulsed dendritic cells (DC vaccine) to six patients with refractory HER2+ advanced or metastatic (stage II (>= 6 +LN), III, or stage IV) BC. We followed the patients on 2019 found that all of the six patients were still alive, 18 years after vaccination. Their blood sample were analyzed with cytometry by time-offlight (CyTOF) and found there is a significantly increased presence of CD27 expressing memory T cells in response to HER2 peptide stimulation. Recent report on the SARS-CoV2 mRNA vaccine also suggested that CD27 expressing memory T cells plays a critical role in long-lasting cellular immunity against SARS-CoV2 infection. Therefore, we hypothesized that CD27 plays a critical role in cellular immunity against BC, and the stimulation of CD27 expressing T cells with mAb targeting CD27 significantly increase the cellular immunity triggered by vaccination against tumor-associated antigen. Result(s): We recapitulate the rise of CD27+ antigen specific T cells among the vaccinated patients using a transgenic mouse model expressing human CD27. When combined the adenoviral-vector based HER2 (Ad-HER2) vaccination with a single dose of human aCD27 antibody (Varlilumab), we found there is a robust increase in the HER2 specific T cells compared to vaccination alone, especially CD27+CD44+ memory CD4 T cells, even after 120 days post vaccination. Using an ICIinsensitive syngeneic HER2+ BC models, we found 50% of mice in the combination group of aCD27 antibody plus Ad-HER2 showed total tumor regression by the end of study. When combined with anti-PD1 antibody, the combination of AdHER2 and Varlilumab leads to total tumor regression in 90% of tumor bearing mice with syngeneic HER2+ BC, indicating that the vaccination against tumor associated antigen HER2 plus anti-CD27 antibody sensitized ICI-insensitive HER2+ BC toward ICI. Conclusion(s): Our data demonstrates that the administration of anti-CD27 antibody significantly increase the long term presence of CD27+ antigen specific memory T cells after vaccination against tumor associated antigen HER2. As consequence, combination of anti-CD27 with HER2 sensitized the immune unresponsive breast cancer toward anti-PD1 antibody. Our study suggests that the vaccination against tumor-associated antigen with mAb targeting CD27 leads to the robust cellular immunity, which is required for successful ICIs against breast cancer.

11.
Cytotherapy ; 25(6 Supplement):S109, 2023.
Article in English | EMBASE | ID: covidwho-20236255

ABSTRACT

Background & Aim: Liposomes are spherical-shaped vesicles composed of one or more lipid bilayers. The ability of liposomes to encapsulate hydro- or lipophilic drugs allowed these vesicles to become a useful drug delivery system. Natural cell membranes, such as Bioxome, have newly emerged as new source of materials for molecular delivery systems. Bioxome are biocompatible and GMP-compliant liposome-like membrane that can be produced from more than 200 cell types. Bioxome self-assemble, with in-process self-loading capacity and can be loaded with a variety of therapeutic compounds. Once close to the target tissue, Bioxome naturally fuse with the cell membrane and release the inner compound. Orgenesis is interested in evaluating the potential of Bioxome as new drug delivery system for treatment of several diseases, including skin repair, local tumour or COVID19. Methods, Results & Conclusion(s): Bioxome were obtained from adipose- derived Mesenchymal Stem Cells, with a process of organic- solvent lipid extraction, followed by lyophilization and sonication assemblage. During the sonication process, Bioxome were charged or not with several cargos. Size distribution of empty Bioxome was detected by Particle Size Analyzer (NanoSight). Electron Microscopy (EM) was performed to assess Bioxome morphology. Lipid content was evaluated by electrospray ionization system. Dose response in vitro test on human lung fibroblasts treated or not with Bioxome encapsulating a specific cargo (API) against COVID19 were performed. NanoSight analysis showed that nanoparticle size in Bioxome samples ranged between 170+/-50 nm, with a concentration ranging between 109-1010+/-106 particles/mL. EM clearly showed the double phospholipid layers that composes the Bioxome. Stability study demonstrated that Bioxome are stable in size and concentration up to 90 days at +4Cdegree or even at RT. No change in size between encapsulated Bioxome with small size (~340 Da) cargo vs empty Bioxome was observed up to 30 days storage. Lipidomic analysis approach revealed that the yield of lipids and their composition are satisfactory for a therapeutic product using Bioxome. Lastly, in the in vitro model of COVID19, Bioxome encapsulating API effectively saved cells from death (20x vs untreated cells) and at lower doses of API than these of non-encapsulated cargo (0.005 microM vs 0.1 microM). Bioxome seems to be an excellent candidate for liposome mimetic tool as drug delivery system for targeting specific organs and diseases treatment.Copyright © 2023 International Society for Cell & Gene Therapy

12.
Cytotherapy ; 25(6 Supplement):S89-S90, 2023.
Article in English | EMBASE | ID: covidwho-20235380

ABSTRACT

Background & Aim: Ricin is one of the most lethal toxins, particularly if inhaled, and is considered a biological threat agent due to its wide availability and ease of production. Pulmonary ricin intoxication manifests in ARDS, cytokine storm, immune infiltration, and severe edema. Passive immunization is the preferred measure against pulmonary ricinosis, but only if administered shortly after exposure. Despite their potential to remedy pulmonary injury and inflammation, mesenchymal cell (MSC) therapies were never investigated in ricinosis. Here, we report the potential for treating pulmonary ricinosis with MesenCure, a professionalized allogeneic MSC therapy shown to reduce the mortality of patients suffering from severe pulmonary manifestations of COVID by 68%. Methods, Results & Conclusion(s): Preliminary studies demonstrated positive MesenCure effects in a sub-lethal pulmonary ricinosis model in CD1 mice. This model is regarded as highly translational due to the broad heterogeneity of these outbred mice. Positive effects included a reduction in excess protein content of the bronchoalveolar lavage fluid (BALF) by 45% when MesenCure was injected intravenously (IV) at 125k cells/animal, 48h post-exposure (PE) and evaluated one day later (p<0.05, Fig. 1A). Moreover, we found up to 52% reduction in the excess BALF leukocytes, when MesenCure was injected IV, 24h PE using the same dose (p<0.05, Fig. 1B) or 6h PE using a double dose (p<0.01, Fig. 1C), and evaluated two days PE. Optimizing the dose and administration route further improved the therapeutic outcome of MesenCure applied 6h PE as assessed by weight loss. As shown in Fig. 1D-E, IV injection of 250k-500k MesenCure cells/animal slightly protected the intoxicated animals against weight loss (p for treatment x time interaction <0.01 or <0.05 for 250k and 500k cells/animal, respectively). Interestingly, one million cells IV resulted in a lesser effect (not shown), however when injected subcutaneously (SC), 1M cells were very effective (p<0.001, Fig. 1F), seemingly even more effective than 2M cells/animal SC (Fig. 1G). Surprisingly, 2M thawed cells/animal injected SC protected the animals against weight loss almost completely (p<0.0001, Fig. H). In conclusion, we provide evidence for the potential of SC MSCs, specifically MesenCure, for treating pulmonary ricinosis and possibly other forms of ARDS. In agreement with Giri and Galipeau (2020), we provide further evidence for the dependency of MSC outcomes on their specific state and administration route. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

13.
Drug Evaluation Research ; 46(1):72-77, 2023.
Article in Chinese | EMBASE | ID: covidwho-20234574

ABSTRACT

Objective To investigated the in vitro antiviral activity of chloroquine and hydroxychloroquine sulfate against different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Prototype, Beta, Delta, Omicron) by changing the sequence of drug and virus introduction. Methods Prophylactic treatment: Vero E6 cells were treated with Chloroquine or hydroxychloroquine sulfate (200.00, 150.00, 100.00, 50.00, 16.70, 5.55, 1.85, 0.62, 0.21 micromol.L-1) for 1 h, then the virus was added and incubated for another 2 h. The virus-drug mixture was repalced with fresh medium until the end of the experiment. Post-entry treatment: Vero E6 cells were incubated with virus for 2 h, then the virus was removed and the cells were cultured with drug-containing medium until the end of the experiment. Full-time treatment: Vero E6 cells were pretreated with the drug for 1 h ahead, then virus was added and incubated for another 2 h. The virus-drug mixture was discarded and the cells were cultured with drug-containing medium until the end of the experiment. After 72 h of culture, the cells were observed to see whether they became round and shed to determine the cytopathic situation, and the semi-maximum effect concentration (EC50) and drug selection index (SI) were calculated. Results Both drugs were less effective in preventing SARS-CoV-2. Chloroquine/hydroxychloroquine sulfate showed good antiviral activity under both therapeutic and full-time treatment. EC50 of hydroxychloroquine sulfate was less than chloroquine, SI was greater than chloroquine, antiviral effect of hydroxychloroquine sulfate was better than chloroquine. The antiviral effect of chloroquine (EC50 = 0.904 micromol.L-1) and hydroxychloroquine sulfate (EC50 = 0.143 micromol.L-1) was more significant against Omicron variant than other variants under therapeutic and full-time treatment conditions. Conclusion Chloroquine/hydroxychloroquine sulfate showed good antiviral activity under both therapeutic and full-time treatment, and both drugs were significantly more active against the Omicron variant than the other variants.Copyright © 2023 Authors. All rights reserved.

14.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20234125

ABSTRACT

Breast cancer is the most common form of cancer and the second cancer-causing death in females. Although remission rates are high if detected early, survival rates drop substantially when breast cancer becomes metastatic. The most common sites of metastatic breast cancer are bone, liver and lung. Respiratory viral infections inflict illnesses on countless people. The latest pandemic caused by the respiratory virus, SARS-CoV-2, has infected more than 600 million worldwide, with documented COVID-related death upward of 1 million in the United States alone. Respiratory viral infections result in increased inflammation with immune cell influx and expansion to facilitate viral clearance. Prior studies have shown that inflammation, including through neutrophils, can contribute to dormant cancer cells reawakening and outgrowth. Moreover, inhibition of IL6 has been shown to decrease breast cancer lung metastasis in mouse models. However, how respiratory viral infections contribute to breast cancer lung metastasis remains to be unraveled. Using MMTV/PyMT and MMTV/NEU mouse models of breast cancer lung metastasis and influenza A virus as a model respiratory virus, we demonstrated that acute influenza infection and the accompanying inflammation and immune cell influx awakens and dramatically increased proliferation and expansion of dormant disseminated cancer cells (DCC) in the lungs. Acute influenza infection leads to immune influx and expansion, including neutrophils and macrophages, with increased proportion of MHCII+ macrophages in early time points, and a sustained decrease in CD206+ macrophages starting 6 days post-infection until 28 days after the initial infection. Additionally, we observed a sustained accumulation of CD4+ T cells around expanding tumor cells for as long as 28 days after the infection. Notably, neutrophil depletion or IL6 knockout reversed the flu-induced dormant cell expansion in the lung. Finally, awakened DCC exhibited downregulation of vimentin immunoreactivity, suggesting a role for phenotypic plasticity in DCC outgrowth following viral infection. In conclusion, we show that respiratory viral infections awaken and increase proliferation of dormant breast cancer cells in the lung, and that depletion of neutrophils or blocking IL6 reverses influenza-induced dormant cell awakening and proliferation.

15.
European Journal of Human Genetics ; 31(Supplement 1):706-707, 2023.
Article in English | EMBASE | ID: covidwho-20232856

ABSTRACT

Background/Objectives: We previously demonstrated that carrying a single pathogenic CFTR allele increases the risk for COVID-19 severity and mortality rate. We now aim to clarify the role of several uncharacterized rare alleles, including complex (cis) alleles, and in trans combinations. Method(s): LASSO logistic regression was used for the association of sets of variants, stratified by MAF, with severity. Immortalized cystic fibrosis bronchial epithelial cell lines and Fischer Rat Thyroid cells were transfected by plasmid carrying specific CFTR mutations. YFP-based assays were used to measure CFTR activity. Result(s): Here we functionally demonstrate that the rare (MAF=0.007) complex G576V/R668C allelemitigates the disease by a gain of function mechanism. Several novel CFTR ultra-rare (MAF <0.001) alleles were proved to have a reduced function;they are associated with disease severity either alone (single or complex alleles) or with another hypomorphic allele in the second chromosome, with a global reduction of CFTR activity between 40 to 72%. Conclusion(s): CFTR is a bidirectional modulator of COVID-19 outcome. At-risk subjects do not have open cystic fibrosis before viral infection and therefore are not easily recognisable in the general population unless a genetic analysis is performed. As the CFTR activity is partially retained, CFTR potentiator drugs could be an option as add-on therapy for at-risk patients.

16.
Cytotherapy ; 25(6 Supplement):S258-S259, 2023.
Article in English | EMBASE | ID: covidwho-20232306

ABSTRACT

Background & Aim: The new UCOE models we have recently developed, tested on many cell groups (including mouse ES and human iPS cells) and human mAb recombinant production studies as well, shows a powerful resistance to DNA methylation- mediated silencing and provides a higher and stable transfection profile. By the urgent need of vaccine development for COVID-19 during the pandemic, in this study we aimed to produce a potential recombinant vaccine by using the new generation UCOEs models of our own design. Methods, Results & Conclusion(s): Existing new-generation UCOE models and standard plasmid vectors to be used as control group were provided. Then, the sequences related to the PCR method were amplified for sufficient stock generation and cloning experiments. Verification in the plasmid vector was carried out in gel electrophoresis. Transfection of 293T cells was performed with clone plasmids carrying antigen genes and plasmids carrying genetic information of lentivirus units for the production of lentiviral vectors. Afterwards, 293T cells produced lentiviral vectors carrying antigen genes. Harvesting of these vectors was carried out during 48th and 72nd hours. Afterwards, CHO cells were transduced with appropriate quantity of lentiviral vectors. Isolation and purification of targeted proteins from the relevant medium were performed by HPLC and Q-TOF methods. A part of the spike and nucleocapsid gene sequences of COVID-19 were firstly cloned into our UCOE models. These UCOEs plasmids were then transferred into 293T cells along with plasmids carrying the genes that will form the lentivirus vectors (LVs). After harvesting and calculation of LV vector titers, the cloned vectors were then transfected into the CHO cells which the targeted recombinant production of the antigen proteins will be carried out. Antigenic structures were then isolated from the culture medium of CHO cells in following days for confirmation. Using HPLC and qTOF mass spectrometer methods, these structures in the medium were confirmed to be the units of spike and nucleocapsid proteins of the COVID-19 virus. In order to produce large amount of the recombinant antigens, the culture was then carried out with bioreactors in liters. At the final stage, these recombinantly produced antigen proteins were tested on rats to measure their immunogenic responses, and the study recently been completed successfully as a potential recombinant vaccine against COVID-19.Copyright © 2023 International Society for Cell & Gene Therapy

17.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20232118

ABSTRACT

Respiratory viral infections (RVI) such as influenza and COVID19 impact the host systemic immune system along with causing deleterious chronic inflammatory responses and respiratory distress. While the role of chronic inflammation in cancer is well-established, the role of RVI on tumorigenesis is poorly defined. To study the role of RVI on breast cancer, we first infected murine respiratory epithelial cells (mRES) with murine sendai virus (mSV), an analog for human parainfluenza virus. These infected mRES were co-cultured with 4T1 murine breast cancer cells in 1:1 dilution on a single 2D plate and also in trans-well format. Both in co-culture and transwell culture we saw a 40- 80% (p<0.05) increased proliferation of breast cancer cells. Similarly, when 4T1 cells were treated with the supernatant collected from infected mRES cells in 1:5 dilution, also demonstrated a 2.3 fold increased breast cancer cell proliferation. The cytokine analysis from the supernatant collected from infected mRES cells demonstrated a 17-23 fold enhanced secretion of alpha/beta-defensins. Direct treatment of alpha-defensin (cyptidin-4, 10 pg/mL) and beta-defensin-3 (mBD3, 20 pg/mL) on 4T1 cells demonstrated enhanced expression of chemokine metastatic receptor, CXCR4 (4.3 fold), angiogenic factor, VEGF (12.8 fold) and cell division favoring factor, CDK2 (8.1 fold). Further, analysis of infected mRES cells demonstrated upregulation of toll-like receptor 2 (TLR2) and NODlike receptor protein 3 (NLRP3) expression. Interesting, co-cultured of infected mRES with syngeneic murine CD4 T cells induced exhaustion phenotype (PD1+ and CTLA4+ ) differentiation of CD4 T cells. Taken together, these data suggest that respiratory viral infections through induction of cancer cell proliferation and inhibiting anti-tumor adaptive immune responses promote breast cancer proliferation.

18.
Cell Transplantation ; 32:15-16, 2023.
Article in English | EMBASE | ID: covidwho-2324818

ABSTRACT

The COVID-19 pandemic is a global outbreak of coronavirus, an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One in five adults who have had COVID-19 in the past was still experiencing any one of the symptoms of long COVID like headache, brain fog, fatigue, and shortness of breath. Up to 30% of individuals with mild to severe infection show diverse neurological symptoms, including dementias. Hence, it is very much important to characterize the neurotropism and neurovirulence of the SARS-CoV-2 virus. This helps us understand the mechanisms involved in initiating inflammation in the brain, further leading to the development of earlyonset Alzheimer's disease and related dementias (ADRDs). In our brain gene expression analysis, we found that severe COVID-19 patients showed increased expression of innate immune response genes and genes that are implicated in AD pathogenesis. To study the infection-induced ADRDs, we used a mouse-adapted strain of the SARS-CoV-2 (MA10) virus to infect mice of different age groups (3, 6, and 20 Months). In this study, we found that aged mice showed evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferoninducible gene Ifi204, and complement genes like C4 and C5AR1. Brain histopathology also showed the AD signature including tau-phosphorylation, tau-oligomerization, and alpha-synuclein expression in aged MA10-infected mice. The results from gene expression profiling of SARS-CoV-2 infected and AD brains and studies with MA10 aged mice show that COVID-19 infection increases the risk of AD in the aged population. Furthermore, this study helps us to understand the crucial molecular markers that are regulated during COVID infection that could act as major players in developing ADRDs. Future studies will be involved in understanding the molecular mechanisms of ADRD in response to COVID infection and developing novel therapies targeting AD.

19.
Hepatology International ; 17(Supplement 1):S110, 2023.
Article in English | EMBASE | ID: covidwho-2324529

ABSTRACT

Background: Diarrhea was typical symptoms of the coronavirus disease 2019 (COVID-19). However, the underlying mechanism had not been fully understood. Aim(s): The study aimed to explore the mechanism of intestinal injury during COVID-19 in a coronavirus murine hepatitis virus strain 3 (MHV-3) induced acute mouse model. Method(s): MHV-3 induced acute infection Balb/cJ mice model was established. Intestine samples were collected at indicated time points as 0 h, 24 h, 48 h and 60 h post infection. The mRNA and protein expression of IL1b, TNFalpha, IL6, caspase 3 and cleaved caspase 3 were examined by real-time quantitative PCR (qPCR) and western blot respectively. The intestine injury and apoptosis were measured by HE staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Moreover, Z-DEVD-FMK (caspase 3 inhibitor) pre-treated MHV-3 infection mice model were established, in which the apoptosis of intestine was evaluated as well. Meanwhile, the murine intestinal cell MODE-K was infected by MHV-3 in vitro for evaluation of virus induced apoptosis. Result(s): Post MHV-3 infection, the histopathology of intestine tissue showed extraordinary injury with time dependence, as well as high level of TUNEL positivity. The mRNA levels of inflammatory cytokine IL1b, TNFalpha and IL6 were significantly increased. The protein expressions of caspase 3 and cleaved caspase 3 in the intestine was found significantly elevated from 24 to 48 h post MHV-3 infection. Z-DEVD-FMK pretreatment inhibited caspase 3 and cleaved caspase 3 expression and decreased TUNEL positivity. Meanwhile, alleviated gut injury and inhibited TNFalpha expression were observed. In vitro treated by MHV-3, intestinal cell line MODE-K showed nine-fold increase of apoptosis by comparison with saline treated ones. The expressions of apoptosis crucial protein caspase3 and cleaved caspase3 significantly elevated, as well as TNFalpha. Conclusion(s): Coronavirus murine hepatitis virus strain 3 induces intestinal injury via caspase 3 dependent apoptosis, which might shed light on the treatment of intestinal complications in COVID-19.

20.
Free Radical Biology and Medicine ; 201(Supplement 1):46, 2023.
Article in English | EMBASE | ID: covidwho-2324939

ABSTRACT

Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. It is the final outcome of the acute respiratory distress syndrome (ARDS), characterized by an initial exacerbated inflammatory response and ultimate tissue scarring. Energy balance may be crucial for the recovery of clinical COVID-19. Hence, we asked if two key pathways involved in energy generation, AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling and fatty acid oxidation (FAO) could be beneficial. We tested the drugs Metformin (AMPk activator) and Baicalin (Cpt1A activator) in different experimental models mimicking COVID-19 associated inflammation in lung and kidney. We also studied two different cohorts of COVID19 patients that had been previously treated with Metformin. These drugs ameliorated lung damage in an ARDS animal model, while activation of AMPK/ACC signaling increased mitochondrial function and decreased TGF-beta-induced fibrosis, apoptosis and inflammation markers in lung epithelial cells. Similar results were observed with two new indole derivatives IND6 and IND8 with AMPK activating capacity. Consistently, a reduced stay in the intensive care unit was observed in COVID-19 patients previously exposed to Metformin. Baicalin also reduced kidney fibrosis in two animal models of kidney injury, another key target of COVID-19, while in vitro both drugs improved mitochondrial function and prevented TGF-beta-induced renal epithelial cell dedifferentiation. Our results support that strategies based on energy supply may prove useful in the prevention of COVID-19-induced lung and renal damage.Copyright © 2023

SELECTION OF CITATIONS
SEARCH DETAIL